Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression.
نویسندگان
چکیده
NF-kappaB is critical for determining cellular sensitivity to apoptotic stimuli by regulating both mitochondrial and death receptor apoptotic pathways. The endoplasmic reticulum (ER) emerges as a new apoptotic signaling initiator. However, the mechanism by which ER stress activates NF-kappaB and its role in regulation of ER stress-induced cell death are largely unclear. Here, we report that, in response to ER stress, IKK forms a complex with IRE1alpha through the adapter protein TRAF2. ER stress-induced NF-kappaB activation is impaired in IRE1alpha knockdown cells and IRE1alpha(-/-) MEFs. We found, however, that inhibiting NF-kappaB significantly decreased ER stress-induced cell death in a caspase-8-dependent manner. Gene expression analysis revealed that ER stress-induced expression of tumor necrosis factor alpha (TNF-alpha) was IRE1alpha and NF-kappaB dependent. Blocking TNF receptor 1 signaling significantly inhibited ER stress-induced cell death. Further studies suggest that ER stress induces down-regulation of TRAF2 expression, which impairs TNF-alpha-induced activation of NF-kappaB and c-Jun N-terminal kinase and turns TNF-alpha from a weak to a powerful apoptosis inducer. Thus, ER stress induces two signals, namely TNF-alpha induction and TRAF2 down-regulation. They work in concert to amplify ER-initiated apoptotic signaling through the membrane death receptor.
منابع مشابه
Gambogic acid, a novel ligand for transferrin receptor, potentiates TNF-induced apoptosis through modulation of the nuclear factor-kappaB signaling pathway.
Gambogic acid (GA), a xanthone derived from the resin of the Garcinia hanburyi, has been recently demonstrated to bind transferrin receptor and exhibit potential anticancer effects through a signaling mechanism that is not fully understood. Because of the critical role of NF-kappaB signaling pathway, we investigated the effects of GA on NF-kappaB-mediated cellular responses and NF-kappaB-regula...
متن کاملStat1 as a component of tumor necrosis factor alpha receptor 1-TRADD signaling complex to inhibit NF-kappaB activation.
Activated tumor necrosis factor alpha (TNF-alpha) receptor 1 (TNFR1) recruits TNFR1-associated death domain protein (TRADD), which in turn triggers two opposite signaling pathways leading to caspase activation for apoptosis induction and NF-kappaB activation for antiapoptosis gene upregulation. Here we show that Stat1 is involved in the TNFR1-TRADD signaling complex, as determined by employing ...
متن کاملTunicamycin sensitizes human melanoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by up-regulation of TRAIL-R2 via the unfolded protein response.
We have reported previously low expression of death receptors for tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) in fresh isolates and tissue sections of melanoma. This seemed to correlate with relative resistance of freshly isolated melanoma cells to TRAIL-induced apoptosis. We show in this study that the endoplasmic reticulum (ER) stress inducer, tunicamycin, selectivel...
متن کاملSuppression of cytokine responses by indomethacin in podocytes: a mechanism through induction of unfolded protein response.
We found that, in murine podocytes, expression of monocyte chemoattractant protein 1 (MCP-1) in response to TNF-alpha was suppressed by indomethacin but not by ibuprofen. This anti-inflammatory potential was correlated with induction of 78-kDa glucose-regulated protein (GRP78), a marker of unfolded protein response (UPR). Indomethacin, but not ibuprofen, also triggered expression of CHOP, anoth...
متن کاملPhosphorylation of TRAF2 within its RING domain inhibits stress-induced cell death by promoting IKK and suppressing JNK activation.
Tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) is an adaptor protein that modulates the activation of the c-Jun NH(2) terminal kinase (JNK)/c-Jun and IkappaB kinase (IKK)/nuclear factor-kappaB (NF-kappaB) signaling cascades in response to TNFalpha stimulation. Although many serine/threonine kinases have been implicated in TNFalpha-induced IKK activation and NF-kappaB-dependent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 26 8 شماره
صفحات -
تاریخ انتشار 2006